*signifies corresponding author; #signifies undergraduate researcher, $signifies high school student

• 41

Achieving Biosensing at Attomolar Concentrations of Cardiac Troponin T in Human Biofluids by Developing a Label-Free Nanoplasmonic Analytical Assay. Liyanage, T.; #Sangha, A.; and *Sardar, R. Analyst. 2017.

• 40

Programmable Colloidal Approach to Hierarchical Structures of Methylammonium Lead Bromide Perovskite Nanocrystals with Bright Photoluminescent Properties. Teunis, M.B.; Johnson, M.A.; Muhoberac B.B.; Seifert, S.; and *Sardar, R. Chemistry of Materials. 2017, 29 (8), 3526-3537.


• 39

Ultrashort, angstrom-scale decay of surface enhanced Raman scattering hot spots. Joshi, G. K.; White, S, L.; Johnson, M. A.; *Sardar, R.; *Jain, P. K. J. Phys. Chem. C 2016, 120, 24973-24981.


• 38

Pure white-light emitting ultrasmall organic-inorganic hybrid perovskite nanoclusters. Teunis, M. B.; Lawrence, K. N.; Dutta, P.; Siegel, A. P.; *Sardar, R. Nanoscale 2016, 8, 17433-17439.


• 37

Dual Role of electron-accepting metal-carboxylate ligands: Reversible expansion of exciton delocalization and passivation of nonradiative trap-states in molecule-like CdSe nanocrystals. Lawrence, K. N.; Dutta, P.; Nagaraju, M.; Teunis, M. B.; Muhoberac, B.;  *Sardar, R. J. Am. Chem. Soc. 2016, 138, 12813-12825.


• 36

Mesoscale growth and ssembly of bright luminescent organolead halide perovskite quantum wires. Teunis, M. B.; Jana, A.; Dutta, P.; Johnson, M. A.; Mandal, M.; Muhoberac, B.;  *Sardar, R. Chem. Mater. 2016, 28, 5043-5054. Most-accessed paper (no. 7), August-September, 2016.


• 35

Investigating the control by quantum confinement and surface ligand coating of photocatalytic efficiency in chalcopyrite copper indium diselenide nanocrystals. Jana, A.; Lawrence, K. N.; Teunis, M. B.; Mandal, M.; Kumbhar, A.; *Sardar, R. Chem. Mater. 2016, 28, 1107-1120. (A.J. and K.N.L. contributed equally to this work).


• 34

Label-free nanoplasmonic-based short noncoding RNA sensing at attomolar concentration allows for quantitative assay of microRNA-10b in biological fluids and circulating exosomes. Joshi, G. K.; Deitz-McElyea, S.; Liyanage, T.; Lawrence, K. N.; $Mali, S.; *Sardar, R.; *Korc, M. ACS Nano. 2015, 9, 11075-11089. Most-accessed paper (no. 16), November 2015-September, 2016.


• 33

Solvent-like ligand-coated ultrasmall cadmium selenide nanocrystals: strong electronic coupling in a self-organized assembly. Lawrence, K. N.; Johnson, M. A.; Dolai, S.; Kumbhar, A.; *Sardar, R. Nanoscale 2015, 7, 11667-11677.


• 32

Mechanistic study of the formation of bright white light-emitting ultrasmall CdSe nanocrystals: Role of phosphine free selenium precursors. Dolai, S.; Dutta, P.; Muhoberac, B. B.; #Irving, C. D.; *Sardar, R. Chem. Mater. 2015, 27, 1057-1070.


• 31

Molecule-like CdSe nanoclusters passivated with strongly interacting ligands: Energy level alignment and photoinduced ultrafast charge transfer processes. Xie, Y.; Teunis, M. B.; Pandit, B.; *Sardar, R.; *Liu, J. J. Phys. Chem. C 2015, 119, 2813-2821.


• 30

Highly specific plasmonic biosensors for ultrasensitive microRNA detection in plasma from pancreatic cancer patients. Joshi, G. K.; Deitz-McElyea, S.; Johnson, M. A.; $Mali, S.; *Korc, M.; *Sardar, R. Nano Lett. 2014, 14, 6955-6963.


• 29

Enhancing the physicochemical and photophysical properties of small (<2.0 nm) CdSe nanoclusters for intracellular imaging applications. Lawrence, K. N.; Dolai, S.; Lin, Y,-H.; Dass, A.; *Sardar, R. RSC Adv. 2014, 4, 30742-30753.


• 28

Effects of surface passivating ligands and ultrasmall CdSe nanocrystal size on delocalization of exciton confinement. Teunis, M. B.; Dolai, S.; *Sardar. R. Langmuir 2014, 30, 7851-7858.


• 27

Novel pH-responsive nanoplasmonic sensor: controlling polymer structural change to modulate localized surface plasmon resonance response. Joshi, G. K.; Johnson, M. A.; *Sardar, R. RSC Adv. 2014, 4, 15807-15815.


• 26

Ultrasensitive photoreversible molecular sensors of azobenzene-functionalized plasmonic nanoantennas. Joshi, G. K.; #Blodgett, K. N.; Muhoberac, B. B.; Johnson, M. A.; #Smith, K. A.; *Sardar, R. Nano Lett. 2014, 14, 532-540.


• 25

Isolation of bright blue light-emitting CdSe nanocrystals with 6.5 kDa core in gram scale: High photoluminescence efficiency controlled by surface ligand chemistry. Dolai, S.; Nimmala, P. R.; Mandal, M.; Muhoberac, B. B.; Dria, K.; Dass, A.; *Sardar, R. Chem. Mater. 2014, 26, 1278-1285.


• 24

Correlated optical spectroscopy and electron microscopy studies of the slow Ostwald-ripening growth of silver nanoparticles under controlled reducing conditions. #Dennis, N. W.; Muhoberac, B. B.; #Newton, J. C.; Kumbhar, A. *Sardar, R. Plasmonics 2014, 9, 111-120.


• 23

Temperature-controlled reversible localized surface plasmon resonance response of polymer-functionalized gold nanoprisms in the solid state. Joshi, G. K.; #Smith, K. A.; Johnson, M. A.; *Sardar, R. J. Phys. Chem. C 2013, 117, 26228-26237.


• 22

Photophysical and redox properties of molecule-like CdSe nanoclusters. Dolai, S.; Dass, A.; *Sardar, R. Langmuir 2013, 29, 6187-6193.


• 21

Designing efficient localized surface Plasmon resonance-based sensing platforms: Optimization of sensor response by controlling the edge length of gold nanoprisms. Joshi, G. K.; #McClory, P.; Muhoberac, b. B.; Kumbhar, A.; #Smith, K. A.; *Sardar, R. J. Phys. Chem. C 2012, 116, 20990-21000.


• 20

Improved localized surface plasmon resonance biosensing sensitivity using chemically synthesized gold nanoprisms as plasmonic transducers. Joshi, G. K.; #McClory, P.; Dolai, S.; *Sardar, R. J. Mater. Chem. 2012, 22, 923-931.

• 19

Low temperature synthesis of magic-sized CdSe nanoclusters: Influence of ligands on photophysical properties. #Newton, J. C.; Ramasamy, K.; Mandal, M.; Joshi, G. K.; Kumbhar, A.; *Sardar, R.  J. Phys. Chem. C 2012, 116, 4380-4389.

• 18

Soft ligand stabilized gold nanoparticles: Incorporation of bipyridyls and two-dimensional assembly. Shem, P. M.; Sardar, R.; *Shumaker-Parry, J. S. J. Colloid Interface Science 2014, 426, 107.

• 17

3D-Addressable redox: Modifying porous carbon electrodes with ferrocenated 2 nm gold nanoparticles. Chow, K, F.; Sardar, R.; Sassin, M. B.; Wallace, J. M.; Feldberg, S. W.; Rolison, D. R.; Long, J. W.; *Murray, R. W. J. Phys. Chem. C 2012, 116, 9283.

• 16

Spectroscopic and microscopic investigation of gold nanoparticle formation: Ligand and temperature effects on rate and particle size. Sardar, R.; *Shumaker-Parry, J. S. J. Am. Chem. Soc. 2011, 133, 8179. Most-read paper (no. 11), June-July, 2011.

• 15

Persistent multilayer electrode adsorption of poly-cationic Au nanoparticles. Beasley, C. A.; Sardar, R.; #Barnes, N. M.; *Murray, R. W. J. Phys. Chem. C. 2010, 114, 18384.

• 14

Single-step generation of fluorophore-encapsulated gold nanoparticle core-shell materials. Sardar, R.; Shem, P. M.; #Pecchia-Bekkum, C.; #Bjorge, N. S; *Shumaker-Parry, J. S. Nanotechnology 2010, 21, 345603. Cover Highlights, Vol. 21, No. 34 August 2010.

• 13

Interfacial Ion transfers between a monolayer phase of cationaic Au nanoparticles and contacting organic solvent. Sardar, R.; Beasley, C. A.; *Murray, R. W. J. Am. Chem. Soc. 2010, 132, 2058.

• 12

One-Step Synthesis of Phosphine-Stabilized Gold Nanoparticles Using the Mild Reducing Agent 9-BBN. Shem, P. M.; Sardar, R.; *Shumaker-Parry, J. S. Langmuir 2009, 25, 13279. Most-read paper (no. 13), November-December, 2009.

• 11

Gold nanoparticles: Past, present, and future. Sardar, R.; Funston, A. M.; *Mulvaney, P.; *Murray, R. W. Langmuir (Perspective) 2009, 25, 13840. Most-read paper (no. 3), in last 12 months, 2009-2010.

• 10

Electrospray ionization mass spectrometry of intrinsically cationized nanoparticles, [Au144/146{SC11H22N(CH2CH3)3}x{S(CH2)5CH3}y]+. Fields-Zinna, C. A.; Sardar, R.; Beasley, C. A.; *Murray, R. W. J. Am. Chem. Soc. 2009, 131, 16266.

• 9

Ferrocenated Au nanoparticle monolayer adsorption on self-assembled monolayer coated electrodes. Sardar, R.; Beasley, C. A.; *Murray, R. W. Anal. Chem. 2009, 81, 6960.

• 8

9-BBN induced synthesis of nearly monodisperse –functionalized alkylthiol stabilized nanoparticles.  Sardar, R.; *Shumaker-Parry, J. S. Chem. Mater. 2009, 21, 1167-1169.

• 7

pH-controlled assemblies of polymeric amine-stabilized gold nanoparticles. Sardar, R.; #Bjorge, N. S; *Shumaker-Parry, J. S. Macromolecules 2008, 41, 4347.

• 6

Asymmetrically functionalized gold nanoparticles organized in one-dimensional chains. Sardar, R.; *Shumaker-Parry, J. S. Nano Lett. 2008, 8, 731.

• 5

Polymer induced synthesis of stable gold and silver nanoparticles and subsequent ligand exchange in water. Sardar, R.; Park, J,-W.; *Shumaker-Parry, J. S. Langmuir 2007, 23, 11883. Most-accessed paper (no. 15), October-December, 2007.

• 4

Versatile solid phase synthesis of gold nanoparticle dimers using an asymmetric functionalization approach. Sardar, R.; #Heap, T. B; *Shumaker-Parry, J. S. J. Am. Chem. Soc. 2007, 129, 5356.

• 3

Nanoengineering of metallic solution through silicon constructs (review article). *Chauhan, B. P. S.; Sardar, R.; Latif, U. Chauhan, M.; Lamoreaux, W. L. Acta. Chim. Slov. 2005, 52, 361. Cover Highlights, Vol. 52, No. 4 December 2005.

• 2

Self-assembled stable silver nanoclusters and nanonecklaces formation: Polymethylhydrosiloxane mediated one-pot route to organosols. *Chauhan, B. P. S.; Sardar, R. Macromolecules 2004, 37, 5136 Cover Highlights, Vol. 38, No. 1 January 11, 2005.

• 1

Synthesis, stabilization and applications of nanoscopic siloxane-metal particle conjugates. *Chauhan, B. P. S.; Rathore, J. S.; Sardar, R.; Tewari, P.; Latif, U. J. Organometal. Chem. 2003, 686, 24.